"

欢迎来到csgo下注(yabovip6666.cn)全新升级娱乐网站。csgo下注综合各种在线游戏于一站式的大型游戏平台,经营多年一直为大家提供安全稳定的游戏环境,csgo下注致力于提供全球客户有价值的游戏,为用户提供优质服务。

<sub id="l7f7v"></sub>

            <thead id="l7f7v"></thead>

            <address id="l7f7v"></address>
            <sub id="l7f7v"></sub>

            <address id="l7f7v"></address>

            <thead id="l7f7v"></thead>

                <sub id="l7f7v"></sub>

                  "
                     
                   
                  研究生處 黨委研究生工作部
                  |
                  首頁  資料  數學與信息科學學院

                  王艷青


                  發布部門: 研究生處  發布時間: 2020-01-06  瀏覽次數: 332

                  鄭州輕工業大學碩士生導師基本情況一覽表


                  姓名

                  王艷青



                  職稱

                  講師

                  學科/專業學位類別

                  應用數學

                  研究方向

                  偏微分方程

                  1.    導師基本情況

                  王艷青,19873月生,理學博士,講師,研究生導師。本科就讀于河南大學,碩士博士畢業于首都師范大學數學科學學院。在國際重要學術期刊Nonlinearity,JDE, CCM,PJM, JMFM,JDDE等雜志以第一作者或通訊作者在上發表15篇論文,均被SCI收錄。目前研究方向:非線性偏微分方程、不可壓縮流體力學方程。

                  2. 代表性成果

                  [1].Wang, Yanqing andYang Minsuk; Improved bounds for box dimensions of potentialsingular points to the Navier–Stokes equations. Nonlinearity 32(2019), no. 12, 4817–4833

                  [2].He, Cheng; Wang,Yanqing;Zhou, Daoguo; New ε-Regularity Criteria of Suitable WeakSolutions of the 3D Navier–Stokes Equations at One Scale. J.Nonlinear Sci. 29 (2019), no. 6, 2681–2698.

                  [3].Wang,Yanqing;Wu, Gang; Zhou, Daoguo;Aregularity criterion at one scale without pressure for suitableweak solutions to the Navier-Stokes equations. J. DifferentialEquations 267 (2019), no. 8, 4673–4704.

                  [4].Jiu, Quansen; Wang,Yanqing;Zhou, Daoguo;OnWolf's regularity criterion of suitable weak solutions to theNavier-Stokes equations. J. Math. Fluid Mech. 21 (2019), no. 2,Art. 22, 16 pp

                  [5].Miao, Changxing;Wang, Yanqing;Regularityconditions for suitable weak solutions of the Navier-Stokessystem from its rotation form. Pacific J. Math. 288 (2017), no.1, 189–215.

                  [6].Wang,Yanqing;Wu, Gang On the box-counting dimension of the potential singularset for suitable weak solutions to the 3D Navier-Stokesequations. Nonlinearity 30 (2017), no. 5, 1762–1772.

                  [7].Ren, Wei; Wang,Yanqing;Wu, Gang;Partialregularity of suitable weak solutions to the multi-dimensionalgeneralized magnetohydrodynamics equations. Commun. Contemp.Math. 18 (2016), no. 6, 1650018, 38 pp.

                  [8].Wang,Yanqing;Wu, Gang;Aunified proof on the partial regularity for suitable weaksolutions of non-stationary and stationary Navier-Stokesequations. J. Differential Equations 256 (2014), no. 3,1224–1249.

                  [9].Jiu, Quansen; Wang,Yanqing;Onpossible time singular points and eventual regularity of weaksolutions to the fractional Navier-Stokes equations. Dyn. PartialDiffer. Equ. 11 (2014), no. 4, 321–343.

                  3. 在研的項目

                   主持國家自然科學基金2項:

                   [1].面上項目(11971446)不可壓縮Navier-Stokes方程適當弱解的研究;2020.01.01-2023.12.31

                   [2].青年項目(11601492)不可壓縮磁流體力學方程弱解的研究;2017.01.01-2019.12.31





                  Copyright2007 鄭州輕工業大學 All Rights Reserved
                  電話:0371-86608280,86601165 郵箱:yjsc@zzuli.edu.cn
                  csgo下注

                  <sub id="l7f7v"></sub>

                            <thead id="l7f7v"></thead>

                            <address id="l7f7v"></address>
                            <sub id="l7f7v"></sub>

                            <address id="l7f7v"></address>

                            <thead id="l7f7v"></thead>

                                <sub id="l7f7v"></sub>